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THE BOUNDARY-LAYER METHOD IN THE FRACTURE MECHANICS OF 

COMPOSITES OF PERIODIC STRUCTURE* 

A.L. KALAMKAROV, B.A. KUDRIAVTSEV and V.Z. PARTON 

The problem of a rectilinear crack in a composite material of doubly - 
periodic structure is considered. It is assumed that the dimensions of 
the crack are considerably greater than the cell of material 
periodicity. A boundary-layer method based on the use of the asymptotic 
method of averaging periodic structures, taking additional solutions of 
boundary-layer type /l/ into account to allow the edge effect that 
occurs near the boundary of the crack outline to be considered, is 
proposed for analysing the stress field in the neighbourhood of a 
macrocrack. 

Analysis of the stress field in highly inhomogeneous (composite) 
materials with an idealized smooth macrocrack is usually performed by 
replacing the inhomogeneous composite medium by a certain homogeneous 
anisotropic medium that is equivalent to the composite material with 
respect to the average reaction. Such an approach enables the 
computation of the average stress field in the composite with a 
macrocrack to be reduced to solving elasticity theory problems for an 
anisotropic homogeneous material with a mathematical slit. If the 
material has a periodic structure (as is true of many composites), the 
average (effective) characteristics of the equivalent should be 
determined by the method of averaging periodic structures /l-3/ which 
yields an asymptotically correct approximation to the exact solution of 
the problem for the initial inhomogeneous medium. The averaging method 
here allows the local structure of the fields being investigated to be 
determined with a high degree of accuracy. This approach was used in 
/4/ to analyse the stress field near a macrocrack in laminar composites 
of periodic structure. In a number of cases formulas were obtained for 

*PrikZ.Matem.Mekhan.,54,2,322-328,1990 



267 

the stress intensity factors that express them in terms of the 
characeristics of the individual composite components and parameters 
which fix the crack location in the laminar material. 

A more rigorous approach to the estimation of the state of stress 
of a composite material with a crack is proposed. 

1. We will confine ourselves to considering a plane problem of elasticity theory for a 
periodically inhomogeneous (composite) medium with a rectilinear macrocrack whose dimensions 
are considerably greater than the dimensions of the periodicity cell. We shall also assume 
that the elastic medium has a doubly-periodic inhomogeneity in the plate xl, x1 and the edges 
of the tunnel crack are parallel to the boundary of the periodicity cell (Fig.1); E is a 

dimensionless small parameter that is the ratio between the 
composite cell dimension and the characteristic body dimension. 
Within the framework of such a scheme, for example, it is 
possible to consider a fibrous unidirectional composite 
material with a tunnel crack whose plane is parallel to the 
fibre, or a laminar composite with a plane crack located 
perpendicular (parallel) to the material layers. 

"(C) ja 0 U 
Let the rectilinear macrocrack pass along the periodicity 

s$ ;(Plf 

, uje) xl cell boundary of the unbounded domain of the composite material 
p1 
c2 : (el G:‘1, Gs2 and let a given system of selfequilibrated normal and tangen- 

3= I 
I fi=/,Z.JJ I 

tial loads act on its edges. The asymptotic solution of the 
equations of elasticity theory in a periodically inhomogeneous 
half-plane I~> 0 (~~(0) under mixed conditions on the 

Fig.1 boundary zp = 0 must be constructed to determine the state 
of stress and strain in the neighbourhood of such a crack. 

The boundary conditions for xp = 0 correspond to specifying stress 
2, 3) 

u*p (q, L-0) (i = 1, 
on t:;i;e;;ion 12~~ I(a and mixed conditions on the displacements and stresses for 

I%l>e . . 
In order to satisfy mixed boundary conditions on the boundary 22 = 0 of a periodically 

inhomogeneous half-plane x,>O within the framework of the asymptotic method, we will con- 
struct the solutions of three auxiliary plane problems for the domain r1> 0. 

2. In the first problem we will seek the solution of the equations 

(4olrb (Yl, YJ 
in the domain 

are singly-periodic functions in the variables Y, S&/E; i, k = 1,2,3; a,f, = 1,2) 

% > 0 for the following conditions on the boundary: 

al:) (s1, 0) = pi (x1) (2.3) 

where zh (%) are given functions of the "slow" variable q. 
Let us postulate the expansion /l-3/ 

&' = u(ko) (2) + PU(kl)(& Y) + e%P (GY) + . .., (2=(q,zJ, y=(y,, y*)) (2.4) 

and on the basis of relationships (2.2) and (2.4) we find 

(2.5) 

As a result of substituting relationship (2.5) into (2.1) and conditions (2.3) we obtain 
the following boundary-value problems: 

=-ay,as- B 
%kE (Y) 

a%g) (z, y) a’up (5) 
- ‘bJ@ (Y) azaa’8 - %k8 h/j 

@up (2, y) 
ay al_ 

a a++Yg 

(2.6) 

(2.7) 

(2.8) 
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We will represent the solution of (2.6) under the conditions (2.7) in the form of the 
sum of two components 

UP) (5, Y) = Elk" I) (s, Y) + r&k',") (2, Y) 

where Up11)(2, Y) are singly-periodic functions in the variabl.es 

while &"' (CC, Y) are functions periodic only in the variable y, 
ution of the following problem: 

Y,,Y, that satisfy (2.6)‘ 

and determined from the sol- 

If we seek G"(.z, Yf in the form 

n$'*' (X, Y) = flnkg (g) ‘do’ fs~/agf3 (2.12) 

where &e(g) are singly-periodic functions determinable from the solution of the local 
problem in the periodicity cell 

f2.13) 

then it can be shown that the condition for problem (2.10) 
in the equality 

and (2.11) to be solvable results 

(2.14) 

(2.15) 

Wow taking account of (2.121 and (2.141, we write the first condition of (2.11) in the 

form 

(2.16) 

The solution of (2.10) can be found from the formula 

where the functions ~~~~(~) are determined from the solution of the following boundary-value 
problem : 

where the functions N&B (Y) are singly-periodic in y,. 

We will seek the functions UP (2, Y) satisfying the relationships (2.81 and (2.9) also 

in the form of the sum 

9) (Cc, Y) = UP (x, Y) + ZP) (2, Y) 
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where ui*'") (z, Y) are singly-periodic functions in the variables Yr,Ya, and UP'*' (5, Y) are 

functions periodic in y, only which tend to zero as Y,-+m. Omitting the awkward equations 

for the terms UPS (s, Y) and I$") (5, Y), we note that the average equations 

(Ccre)d*,~)(~)/iaz,ass = 0 (2.19) 

and the formulas for the effective characteristics of a homogeneous medium 

follow from the solvability conditions for the problem in ~g'r)(r,Y). 
Therefore, within the framework of the zero-th approximation /2/, the displacements in 

a periodically inhomogeneous half-plane with a given load on the boundary z, = 0 are deter- 
mined from the formulas 

W Un z@(s)'+ E[Nnra(Y) + N:&(Y)lauP'(x)/0y (2.21) 

where the vector z&'(z) is the solution of the average problem (2.19) for the half-plane 

22 > 0 satisfying condition (2.14). 
The expressions for the microstresses in a cell of the composite material here have the 

form 

(2.22) 

3. Let us examine the second auxiliary problem for a periodically inhomogeneous half- 
plane with given displacements on its boundary 

UPIXFO = vc(r1) (3.1) 

If expansion (2.4) is used, it follows from condition (3.1) that 

UP(s)I = Vi(%) (3.2) 

where the functions u*(l) (2, Y) and z@(.r,y) should satisfy (2.6) and (2.8) and the con- 
ditions 

d"(aY)/*Do= 0, ul"'(r,Y)I%Fo= 0 (3.3) 

As in the preceding problem, we seek ?@)(z, y) in the form of a sum of two components 

z+r) (r. y) and zQ**) (r, y). An asymptotic analysis of this problem is performed in /I/ and 
it is shown that the functions mentioned can be represented in the form 

where NnkB (y) are single-periodic functions in the variables 
while iv!& (y) 

bl1t h satisfying Eqs.(2.13) 
are singly-periodic solutions in y, of the following problem for the half- 

plane Pa>0 

The constants A"' 
nki!h in the first condition of (3.5) are determined uniquely from the 

condition for problem (3.4) and (3.5) to be solvable (see /l/1. 
In this case the solutions of (2.8) under zero conditions on the half-plane boundary can 

also be determined in the form of a sun of two components, the first of which is a solution 
periodic in yl,Yr while the second is periodic in y, only and tends to zero as ya*m. 
The global (average) Eqs.(2.19) here follow from the condition for the local problem to be 
solvable for the periodic component in 'y,, Y, of the total solution. 

Thus, within the framework of the zero-th approximation we have the following expression 
for the displacements in a periodically inhomogeneous half-plane 

&' = ?.@ (z) -+ e [&k&3 ($‘) + #&s (y)] @’ (z)/~*@ (3.6) 
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where uR@') (I) are determined from the solution of the average problem, Eqs 
ditions (3.21, while the formulas 

(2.19) and con- 

(3.7) 

hold for the microstress components in the composite cell. 

4. If mixed boundary conditions are given on the boundary z2 = 0 of the inhomogeneous 
half-plane x,>O in the form, for example, 

&)I,*=0 = pi(q) (i = 1,3), UPIr,=O = vz(zr) (4.1) 

it can be shown that the asymptotic solution of the problem has the form (2.21) and (2.221 as 
before, but the functions NC& (y), that are determined from the solution of the following 
problem in the domain Y2 > 0 

1 =0 (i,k,n.= 1,2,3) 

a@&(Y) 
%?nv (Y)IWO~ 

I 
= &k, - &kg (y) Iv,=0 (i = 1, 3) 

N::)8 (y) ly z,, = - N,k; (y) ,u::oo+ h@) (3) 
. skfl; Nnkfl (y) - 0 as Yz-, m 

(4.2) 

(4.3) 

should be substituted in place of the functions N!& (Y) in these formulas, where the func- 

tions N$ (y) are singly-periodic in y,. 

In this case the vector ur(0) (I) is the solution of (2.19)under the conditions 

c:,k&(ko) (z)/a+3 Ix.==0 = pi (51) (i = 173) @ (I) j+, = v, (11) (4.4) 

5. Let us use the results of solving the above-mentioned problems to analyse the state 
of stress in the neighbourhood of the vertex of a rectilinear macrocrack of a normal discon- 
tinuity that passes over the boundary of rectangular periodicity cells of a composite medium. 
let there be no shear stresses IQ), u#) on the edges of this crack and let the normal 
stress e Ir.40 = p2 (%), 1 x1 I< a 

be given. Then, because of the symmetry of the state of stress and strain about 
the consideration can be limited to Just the upper half-plane (% > 0) on whose 
following conditions should be satisfied (Fig-l): 

uJ@Ix.=o=O(i=1,3), IX,l<rn 

uzJe) Ix,=0 = pz (q), 1 z1 / < a; uz@) IL-[) = 0, 1 xi 1 > a 

the xl axis, 
boundary the 

(5.1) 

Analysing the state of stress of an inhomogeneous half-plane with the boundary conditions 
(5.1), several characteristic domains can be extracted in the neighbourhood of the half-plane 
boundary. We will first consider the domain 4 in the neighbourhood of the points q = f a, 
x, = 0 in the form of a rectangle with the sides 6, + 8% 6 (Fig.2). This domain contains 
a finite (fairly small) number of periodicity cells and the state of stress and strain within 
it should be determined directly from the solution of the elasticity problem without applying 
asymptotic methods of averaging. The domain 4 is part of an unbounded strip O<s,<6, 
l.%I<~* within which the sections O<x,<6, lx1 I<a (domain 1) and O<x,<& IsI I> 
a (domain 3) are extracted, where utilization of asymptotic solutions of the form elucidated 
in Sect.2 for domain 1 and the form elucidated!in Sect.4 for domain 3 is possible. It must 
here be noted that the functions N!&(Y) and N!$, (y) determined from the solutions of the 

boundary-layer problems (2.18) and (4.2), (4.3) are solutions of boundary-layer type, and 
consequently, we can set 

N:& (y) = 0, NC& (y) = 0 

in domain 2 (x2> 6) 
Therefore, the quantity 6 is found by solving problems (2.18) and (4.2) and (4.3) from 

the condition 



271 

The choice of the quantities 8,,6, (Fig.2) can be made on the basis of the following 
reasoning. perturbation of the state of stress due to 
replacement of the boundary conditions in the nigbbourhood 
of the points ~,=a,~,=0 (crack apices), is localized in 
domain 4 and does not extend beyond its limits. The character- 
istic dimensions of the perturbation domain can here be 
estimated from the known asymptotic forms for the stress in 
the neighbourhood of a crack. Moreover, it is convenient to 
select the values of S, h,&, such that the boundaries of 

Li domain 4 coincide with the boundaries of the periodicity 

Fig.2 
cells of the composite (see Fig.2). 

Having the solutions of problems (2.18) and (4.2), (4.31, 
the stresses can be given on three sides of the rectangle 4, 
r.e., on the sections xX= a-6,, ~,==a+6,. O<X,<~ 

and a- 6, <xl< a 4 S,, ~2 = 6. Since the boundary conditions on the section a - 6,<r,<n -!- 
8 a, s,=O are known (relationship (5.1)), the solution of the problem of elasticity theory 
in domain 4 can be constructed, for instance, using numerical methods. 

The formulation of the problem will here to the following 

We note that the constants f$S) 
aW from the conditions determined by the last equality 

in (4.3) do not enter into these relationships. 
The functions @(z) (x = i,Z) are solutions of the following average problem: 

(cyaxB> a%(f) (zmma2, = 0, s,> 0 

The coefficients in the formulation of the average problem were determined above (see 
relationships (2.15) and (2.20)). 

We note that the possibility of extracting the local domain 4 with known boundary con- 
ditions on its contour enables a fairly rigourous analysis to be carried out of the state of 
stress in this domain for any location of the crack tip in the composite cell, and particularly 
for the case when the crack apex is on the interfacial boundary of two heterogeneous com- 
ponents. 

The proposed method of boundary-layer solutions can also be used in different contact 
problems of the theory of the elasticity of composite materials of periodic configuration, 
for instance, in the problem of a stamp. 

1. 

2. 
3. 

4. 

REFERENCES 

BAKRVALOV N.S. and PANASENKO G.P., 
1984. 

Averaging of Processes in Periodic Media. Nauka, Moscow, 

PGBEDRYA B.E., Mechanics of Composite Materials. Izd. Mosk. Gos. Univ., Moscow, 1984. 
KALAMKAROV A-L., KUDRYAVTSEV B.A. and PARTON V.Z., Asymptotic Method of Averaging in the 
Mechanics of Composite Materials of Regular Structure. Science and Engineering Surveys. 
Ser. Mechanics of a Deformable Solid, VINITI, Moscow,l9, 1987. 

PARTGN V.E. and KUDRYAVTSEV B.A., 
Mekhan. Materialov, 1, 1986. 

On the fracture of laminar composites. Fix.- Khim. 
Translated by M.D.F. 


